汽车配件俄语

图片 4

汽车辆配件件日语-意大利语翻译大全(M)
土耳其(Turkey)语是联合国七个官方语言之一。以法语做为母语的国度包罗:俄罗丝、白俄罗斯、哈萨克Stan、吉尔吉斯Stan、未得国际承认的德涅斯特河沿岸共和国、南奥塞梯、阿布哈兹等。俄联邦是中国的最大邻国,中国和俄罗斯交易极度蓬勃。俄罗丝驻华商务代表齐普拉科夫10月27日在2008西南亚发展论坛上表示,二零一五年中国和俄罗丝贸易额推断将越过500亿美金。中华夏族民共和国小车辆配件件对俄出口前景特别乐观,本站特意整理了常用小车辆配件件英文与立陶宛(Lithuania)语的翻译,也包罗了德文小车工程方面包车型大巴词汇。如转发帖子敬请注脚出处:/Books/Book/15/3466/A

The airplane engine and propeller, often referred to as the aircraft
powerplant, work in combination to produce thrust. The powerplant
propels the airplane and drives the various systems that support the
operation of an airplane.

  • B – C – D – E – F – G – H – I – J – K – L – M – N – O – P – Q – R – S
  • T – U – V – W Mmachine – машина, станок, обрабатывать
    резаниемmachinery – машины, техника, механизмыmagnet – магнитmagnetic –
    магнитный, магнито-magnetic field – магнитное полеmagnetic flux –
    магнитный потокmagnetic switch – электромагнитный выключатель,
    соленоидmagneto – магнетоmain – главный, коренной, основнойmain air
    bleed – главки воздушный каналmain beam – дальний светmain bearing –
    коренной подшипник, подшипник коленчатого валаmain bearing journal –
    шейка коренного подшипника коленчатого валаmain jet – главный жиклёрmain
    journal – шейка коренного подшипника коленчатого валаmain leaf –
    коренной лист рессорыmainshaft – вторичный / ведомый валmainshaft spigot
  • гнездо в торце ведущего вала для игольчатого п ведомого валаmaintain –
    содержать в порядке, сохранятьmaintenance – техобслуживание,
    уходmaintenance-free – не требующий обслуживанияmajor – больший,
    основнойmajor accident – крупная авария, большое столкновениеmalady –
    неисправностьmale – входящий в другую деталь, охватываемый, “папа”male
    connector – штыревая часть соединителя, вилка, “папа”malfunction –
    помеха, неисправная работа, работа с перебоямиmallet – киянка,
    деревянный молотокmanagement – руководство, управлениеmandrel – оправка,
    бородок, пробойникmanifold – трубопровод, патрубокmanifold ablolute
    pressure (MAP) – давление во впускном коллектореmanifold gasket –
    уплотнительная прокладка коллектораmanometer – манометрmanual –
    руководство, ручной, вручнуюmanual gearbox – коробка передач с ручным
    переключениемmanual transaxle, -transmission – коробка передач с ручным
    переключениемmanufacturer – изготовитель, производительmap – картаMAP
    (manifold ablolute pressure) – давление во впускном коллектореmap lamp,
    -light – лампа для освещения картыmargin – край, обочина, дистанция
    между автомобилямиmark – метка, знак, отмечать, следmarker lamp, -light
  • габаритная лампаmarking – отмечать, маркироватьmask – шаблон,
    накладка, трафаретmasking tape – клейкая лента для закрытия не
    окрашиваемых частей кузоваmass – массаmass air flow sensor – измеритель
    количества воздухаmaster – главный, основнойmaster cylinder – главный
    цилиндрmastic – мастика, замазкаmat – мат, коврикmatch – подбирать
    подходящее / пару, сочетатьmatchmark – установочная меткаmate – парная /
    сопряжённая деталь, сопрягатьmaterial – материалmating serrations –
    сопряжённые зубцыmating Surface – сопряжённые / соприкасающиеся
    поверхностиmatrix – матрица, секция, элементmatting – подстилка,
    коврикmauve – розовато-лиловыйmaximum – максимальный, предельныйmean –
    середина, средний, средняя величинаmean pressure – среднее
    давлениеmeasure – мера, размер, измерятьmeasurement – измерениеmeasuring
    point – точка для измеренияmechanical – механическийmechanic(ian) –
    механик, слесарьmechanism – механизмmedium – среда, средне-medium size –
    средний размерmelt – плавка, расплавлятьmember – часть, опора,
    балкаmembrane – мембрана, диафрагмаmemory – память, запоминающее
    устройствоmercury – ртутьmerge – заглубить, заподлицо, впотайmesh –
    зацепление, находиться в зацепленииmesh load – сила сцепленияmessage –
    сообщение, информацияmetal – металлmeter – метр, измерительный прибор,
    измерятьmetering chamber – измерительная / дозирующая камераmetering
    head – измерительная головкаmetering rod – измерительная штанга,
    регулирующая / регулируемая тягаmetering valve – дозирующий /
    регулирующий клапан, игольчатый клапанmethod – метод, способ,
    порядокmethylated spirit – денатурат, этиловый спиртmica insulator –
    слюдяной изоляторmicrocomputer – микрокомпьютер, бортовой
    компьютерmicrofiche – микрофишаmicrometer – микрометрmicroprocessor –
    микропроцессорmicroswitch – микровыключательmid – средне-, полу-,
    нейтральныйmid engine – двигатель центрального расположенияmid-range –
    средняя зона, средний режимmile – миля (1609 м)mileage – пробег
    автомобиля в миляхmiles per hour (mph) – миль в часmineral oil –
    минеральное маслоminimum – минимум, наименьшийmirror – зеркалоmirror
    defogger – обогреватель зеркалаmisalignment – несоосность,
    непараллельность, отклонение от осиmisfire – прерывание,
    перебойmisfiring – пропуск / перебой зажиганияmist – туман, мглаmix –
    смесь, мешать, перемешиватьmixing valve – смесительный клапанmixture –
    смесьmixture (adjustment) screw – регулировочный винт качества
    смесиmixture (control) screw – регулировочный винт качества смесиmixture
    ratio – состав смесиmobile phone – мобильный / радио телефонmode –
    действие, режим работыmodel – модель, образецmodel year – период выпуска
    модели автомобиляmodification – изменение, модификацияmodified –
    модифицированmodify – изменять, преобразовывать, превращатьmodulator –
    модулятор, преобразовательmodule – модуль, блок управленияmoist –
    влажный, сыройmoistener – увлажнительmoisture – влажностьmold – форма,
    отливать в формуmolecule – молекулаmolybdenum – молибден, Моmoment –
    моментmomentary – мгновенный, кратковременныйMON – Motor Octane Number –
    октановое число по моторному методуmonitor – монитор, проверочное
    устройство, проверкаmono – цельный, одиночныйmonocoque – бескаркасный
    несущий корпус, монококmonolithic – единый, монолитныйmonth –
    месяцmoonroof – люк в крышеmotion – движение, перемещение, ходmotor –
    электромотор, мотор, двигательmotorway – магистраль, автострадаmould –
    литейная форма, лекало, шаблонmoulding – молдинг, декоративная
    накладкаmount – монтировать, устанавливать, крепление, опораmounting –
    монтаж, установка, сборкаmounting bracket – установочный / опорный
    кронштейнmouth – вход, горловина, отверстиеmovable – движущийся,
    подвижныйmove – двигать, смещать, передвигатьmovement – движение,
    передвижение, ходmoving coil – перемещающаяся / вращающаяся катушкаMP –
    multi-purpose grease – универсальная консистентная смазкаmph (miles per
    hour) – миль в часMPI – multi-point injection – впрыск топлива во
    впускной трактMT – manual transaxle, -transmission – коробка передач с
    ручным переключениемmud flap – грязеотражатель, фартук крыла,
    брызговикmudguard – крылоmuffler – глушительmulti – многоmulti-element
    pump – многоплунжерный насос высокого давленияmulti-function switch –
    многофункциональный переключательmulti-grade oil – универсальное /
    всесезонное маслоmulti-hole injector – бесштифтовая форсункаmulti-hole
    nozzle – бесштифтовая форсункаmulti-leaf spring – многолистовая
    рессораmulti-meter – тестер, авометрmultiple – многократный, сложный,
    составнойmultiplication – ускоренная передача, умножениеmultiplier –
    множитель, коэффициентmulti-plug – многополюсная вилка, многоштырьковый
    разъёмmulti-point (fuel) injection – MPI – впрыск топлива во впускной
    трактmulti-port (fuel) injection – впрыск топлива во впускной
    трактmulti-purpose grease – MP – универсальная консистентная
    смазкаmulti-spherical – многосферическийmulti-valve –
    многоклапанныйmushroom (type) tappet – грибовидный толкатель клапана

Reciprocating engines底特律活塞队(Detroit Pistons)内燃机

Most small airplanes are designed with reciprocating engines. The name
is derived from the back-and-forth, or reciprocating, movement of the
pistons. It is this motion that produces the mechanical energy needed to
accomplish work. Two common means of classifying reciprocating engines
are:

  1. by cylinder arrangement with respect to the crankshaft—radial,
    in-line, v-type or opposed, or
  2. by the method of cooling—liquid or air-cooled.

Radial engines were widely used during World War II, and many are still
in service today. With these engines, a row or rows of cylinders are
arranged in a circular pattern around the crankcase. The main advantage
of a radial engine is the favorable power-to-weight ratio.

In-line engines have a comparatively small frontal area, but their
power-to-weight ratios are relatively low. In addition, the rearmost
cylinders of an air-cooled, in-line engine receive very little cooling
air, so these engines are normally limited to four or six cylinders.

V-type engines provide more horsepower than in-line engines and still
retain a small frontal area. Further improvements in engine design led
to the development of the horizontally-opposed engine.

Opposed-type engines are the most popular reciprocating engines used on
small airplanes. These engines always have an even number of cylinders,
since a cylinder on one side of the crankcase “opposes” a cylinder on
the other side. The majority of these engines are air cooled and usually
are mounted in a horizontal position when installed on fixed-wing
airplanes. Opposed-type engines have high power-to-weight ratios because
they have a comparatively small, lightweight crankcase. In addition, the
compact cylinder arrangement reduces the engine´s frontal area and
allows a streamlined installation that minimizes aerodynamic drag.

The main parts of a reciprocating engine include the cylinders,
crankcase, and accessory housing. The intake/exhaust valves, spark
plugs, and pistons are located in the cylinders. The crankshaft and
connecting rods are located in the crankcase. The magnetos are normally
located on the engine accessory housing.

图片 1

Figure 1: Main components of a reciprocating engine.

The basic principle for reciprocating engines involves the conversion of
chemical energy, in the form of fuel, into mechanical energy. This
occurs within the cylinders of the engine through a process known as the
four-stroke operating cycle. These strokes are called intake,
compression, power, and exhaust.

图片 2

Figure 2: The arrows in this illustration indicate the direction of
motion of the crankshaft and piston during the four-stroke cycle.

The intake stroke begins as the piston starts its downward travel. When
this happens, the intake valve opens and the fuel/air mixture is drawn
into the cylinder.
The compression stroke begins when the intake valve closes and the
piston starts moving back to the top of the cylinder. This phase of the
cycle is used to obtain a much greater power output from the fuel/air
mixture once it is ignited.
The power stroke begins when the fuel/air mixture is ignited. This
causes a tremendous pressure increase in the cylinder, and forces the
piston downward away from the cylinder head, creating the power that
turns the crankshaft.
The exhaust stroke is used to purge the cylinder of burned gases. It
begins when the exhaust valve opens and the piston starts to move toward
the cylinder head once again.
Even when the engine is operated at a fairly low speed, the four-stroke
cycle takes place several hundred times each minute. In a four-cylinder
engine, each cylinder operates on a different stroke. Continuous
rotation of a crankshaft is maintained by the precise timing of the
power strokes in each cylinder. Continuous operation of the engine
depends on the simultaneous function of auxiliary systems, including the
induction, ignition, fuel, oil, cooling, and exhaust systems.

Propeller

The propeller is a rotating airfoil, subject to induced drag, stalls,
and other aerodynamic principles that apply to any airfoil. It provides
the necessary thrust to pull, or in some cases push, the airplane
through the air.

The engine power is used to rotate the propeller, which in turn
generates thrust very similar to the manner in which a wing produces
lift. The amount of thrust produced depends on the shape of the airfoil,
the angle of attack of the propeller blade, and the r.p.m. of the
engine. The propeller itself is twisted so the blade angle changes from
hub to tip. The greatest angle of incidence, or the highest pitch, is at
the hub while the smallest pitch is at the tip.

图片 3

Figure 3: Changes in propeller blade angle from hub to tip.

The reason for the twist is to produce uniform lift from the hub to the
tip. As the blade rotates, there is a difference in the actual speed of
the various portions of the blade. The tip of the blade travels faster
than that part near the hub, because the tip travels a greater distance
than the hub in the same length of time.

Changing the angle of incidence (pitch) from the hub to the tip to
correspond with the speed produces uniform lift throughout the length of
the blade. If the propeller blade was designed with the same angle of
incidence throughout its entire length, it would be inefficient, because
as airspeed increases in flight, the portion near the hub would have a
negative angle of attack while the blade tip would be stalled.

图片 4

Figure 4: Relationship of travel distance and speed of various portions
of propeller blade.

Small airplanes are equipped with either one of two types of propellers.
One is the fixed-pitch, and the other is the controllable-pitch.

Fixed-pitch propeller

The pitch of this propeller is set by the manufacturer, and cannot be
changed. With this type of propeller, the best efficiency is achieved
only at a given combination of airspeed and r.p.m. There are two types
of fixed-pitch propellers—the climb propeller and the cruise propeller.
Whether the airplane has a climb or cruise propeller installed depends
upon its intended use:

The climb propeller has a lower pitch, therefore less drag. Less drag
results in higher r.p.m. and more horsepower capability, which increases
performance during takeoffs and climbs, but decreases performance during
cruising flight.
The cruise propeller has a higher pitch, therefore more drag. More drag
results in lower r.p.m. and less horsepower capability, which decreases
performance during takeoffs and climbs, but increases efficiency during
cruising flight.
The propeller is usually mounted on a shaft, which may be an extension
of the engine crankshaft. In this case, the r.p.m. of the propeller
would be the same as the crankshaft r.p.m. On some engines, the
propeller is mounted on a shaft geared to the engine crankshaft. In this
type, the r.p.m. of the propeller is different than that of the engine.
In a fixed-pitch propeller, the tachometer is the indicator of engine
power.

图片 5

Figure 5: Engine r.p.m. is indicated on the tachometer.

A tachometer is calibrated in hundreds of r.p.m., and gives a direct
indication of the engine and propeller r.p.m. The instrument is
color-coded, with a green arc denoting the maximum continuous operating
r.p.m.

Some tachometers have additional markings to reflect engine and/or
propeller limitations. Therefore, the manufacturer´s recommendations
should be used as a reference to clarify any misunderstanding of
tachometer markings.

The revolutions per minute are regulated by the throttle, which controls
the fuel/air flow to the engine.

At a given altitude, the higher the tachometer reading, the higher the
power output of the engine.

When operating altitude increases, the tachometer may not show correct
power output of the engine. For example, 2,300 r.p.m. at 5,000 feet
produce less horsepower than 2,300 r.p.m. at sea level. The reason for
this is that power output depends on air density. Air density decreases
as altitude increases. Therefore, a decrease in air density (higher
density altitude) decreases the power output of the engine. As altitude
changes, the position of the throttle must be changed to maintain the
same r.p.m. As altitude is increased, the throttle must be opened
further to indicate the same r.p.m. as at a lower altitude.

Adjustable-pitch propeller

Although some older adjustable-pitch propellers could only be adjusted
on the ground, most modern adjustable-pitch propellers are designed so
that you can change the propeller pitch in flight. The first
adjustable-pitch propeller systems provided only two pitch settings – a
low-pitch setting and a high-pitch setting. Today, however, nearly all
adjustable-pitch propeller systems are capable of a range of pitch
settings.

A constant-speed propeller is the most common type of adjustable-pitch
propeller. The main advantage of a constant-speed propeller is that it
converts a high percentage of brake horsepower (BHP) into thrust
horsepower (THP) over a wide range of r.p.m. and airspeed combinations.
A constant-speed propeller is more efficient than other propellers
because it allows selection of the most efficient engine r.p.m. for the
given conditions.

An airplane with a constant-speed propeller has two controls—the
throttle and the propeller control. The throttle controls power output,
and the propeller control regulates engine r.p.m. and, in turn,
propeller r.p.m., which is registered on the tachometer.

Once a specific r.p.m. is selected, a governor automatically adjusts the
propeller blade angle as necessary to maintain the selected r.p.m. For
example, after setting the desired r.p.m. during cruising flight, an
increase in airspeed or decrease in propeller load will cause the
propeller blade angle to increase as necessary to maintain the selected
r.p.m. A reduction in airspeed or increase in propeller load will cause
the propeller blade angle to decrease.

The range of possible blade angles for a constant-speed propeller is the
propeller´s constant-speed range and is defined by the high and low
pitch stops. As long as the propeller blade angle is within the
constant-speed range and not against either pitch stop, a constant
engine r.p.m. will be maintained. However, once the propeller blades
contact a pitch stop, the engine r.p.m. will increase or decrease as
appropriate, with changes in airspeed and propeller load. For example,
once a specific r.p.m. has been selected, if aircraft speed decreases
enough to rotate the propeller blades until they contact the low pitch
stop, any further decrease in airspeed will cause engine r.p.m. to
decrease the same way as if a fixed-pitch propeller were installed. The
same holds true when an airplane equipped with a constant-speed
propeller accelerates to a faster airspeed. As the aircraft accelerates,
the propeller blade angle increases to maintain the selected r.p.m.
until the high pitch stop is reached. Once this occurs, the blade angle
cannot increase any further and engine r.p.m. increases.

On airplanes that are equipped with a constant-speed propeller, power
output is controlled by the throttle and indicated by a manifold
pressure gauge. The gauge measures the absolute pressure of the fuel/air
mixture inside the intake manifold and is more correctly a measure of
manifold absolute pressure (MAP). At a constant r.p.m. and altitude, the
amount of power produced is directly related to the fuel/air flow being
delivered to the combustion chamber. As you increase the throttle
setting, more fuel and air is flowing to the engine; therefore, MAP
increases. When the engine is not running, the manifold pressure gauge
indicates ambient air pressure (i.e., 29.92 in. Hg). When the engine is
started, the manifold pressure indication will decrease to a value less
than ambient pressure (i.e., idle at 12 in. Hg). Correspondingly, engine
failure or power loss is indicated on the manifold gauge as an increase
in manifold pressure to a value corresponding to the ambient air
pressure at the altitude where the failure occurred.

图片 6

Figure 6: Engine power output is indicated on the manifold pressure
gauge.

The manifold pressure gauge is color-coded to indicate the engine´s
operating range. The face of the manifold pressure gauge contains a
green arc to show the normal operating range, and a red radial line to
indicate the upper limit of manifold pressure.

For any given r.p.m., there is a manifold pressure that should not be
exceeded. If manifold pressure is excessive for a given r.p.m., the
pressure within the cylinders could be exceeded, thus placing undue
stress on the cylinders. If repeated too frequently, this stress could
weaken the cylinder components, and eventually cause engine failure.

You can avoid conditions that could overstress the cylinders by being
constantly aware of the r.p.m., especially when increasing the manifold
pressure.

Conform to the manufacturer´s recommendations for power settings of a
particular engine so as to maintain the proper relationship between
manifold pressure and r.p.m.

When both manifold pressure and r.p.m. need to be changed, avoid engine
overstress by making power adjustments in the proper order:

When power settings are being decreased, reduce manifold pressure before
reducing r.p.m. If r.p.m. is reduced before manifold pressure, manifold
pressure will automatically increase and possibly exceed the
manufacturer´s tolerances.
When power settings are being increased, reverse the order—increase
r.p.m. first, then manifold pressure.
To prevent damage to radial engines, operating time at maximum r.p.m.
and manifold pressure must be held to a minimum, and operation at
maximum r.p.m. and low manifold pressure must be avoided.
Under normal operating conditions, the most severe wear, fatigue, and
damage to high performance reciprocating engines occurs at high r.p.m.
and low manifold pressure.

Excursion: Aerodynamics of the propeller

Induction systems

The induction system brings in air from the outside, mixes it with fuel,
and delivers the fuel/air mixture to the cylinder where combustion
occurs. Outside air enters the induction system through an intake port
on the front of the engine cowling. This port normally contains an air
filter that inhibits the entry of dust and other foreign objects. Since
the filter may occasionally become clogged, an alternate source of air
must be available. Usually, the alternate air comes from inside the
engine cowling, where it bypasses a clogged air filter. Some alternate
air sources function automatically, while others operate manually.

Two types of induction systems are commonly used in small airplane
engines:

You can leave a response, or trackback from your own site.

Leave a Reply

网站地图xml地图